Wednesday, 31 December 2014

Data Extraction, Web Screen Scraping Tool, Mozenda Scraper

Web Scraping

Web scraping, also known as Web data extraction or Web harvesting, is a software method of extracting data from websites. Web scraping is closely related and similar to Web indexing, which indexes Web content. Web indexing is the method used by most search engines. The difference with Web scraping is that it focuses more on the translation of unstructured content on the Web, characteristically in rich text format like that of HTML, into controlled data that can be analyzed stored and in a spreadsheet or database. Web scraping also makes Web browsing more efficient and productive for users. For example, Web scraping automates weather data monitoring, online price comparison, and website change recognition and data integration. 

This clever method that uses specially coded software programs is also used by public agencies. Government operations and Law enforcement authorities use data scrape methods to develop information files useful against crime and evaluation of criminal behaviors. Medical industry researchers get the benefit and use of Web scraping to gather up data and analyze statistics concerning diseases such as AIDS and the most recent strain of influenza like the recent swine flu H1N1 epidemic.

Data scraping is an automatic task performed by a software program that extracts data output from another program, one that is more individual friendly. Data scraping is a helpful device for programmers who have to generate a line through a legacy system when it is no longer reachable with up to date hardware. The data generated with the use of data scraping takes information from something that was planned for use by an end user.

One of the top providers of Web Scraping software, Mozenda, is a Software as a Service company that provides many kinds of users the ability to affordably and simply extract and administer web data. Using Mozenda, individuals will be able to set up agents that regularly extract data then store this data and finally publish the data to numerous locations. Once data is in the Mozenda system, individuals may format and repurpose data and use it in other applications or just use it as intelligence. All data in the Mozenda system is safe and sound and is hosted in a class A data warehouses and may be accessed by users over the internet safely through the Mozenda Web Console.

One other comparative software is called the Djuggler. The Djuggler is used for creating web scrapers and harvesting competitive intelligence and marketing data sought out on the web. With Dijuggles, scripts from a Web scraper may be stored in a format ready for quick use. The adaptable actions supported by the Djuggler software allows for data extraction from all kinds of webpages including dynamic AJAX, pages tucked behind a login, complicated unstructured HTML pages, and much more. This software can also export the information to a variety of formats including Excel and other database programs.

Web scraping software is a ground-breaking device that makes gathering a large amount of information fairly trouble free. The program has many implications for any person or companies who have the need to search for comparable information from a variety of places on the web and place the data into a usable context. This method of finding widespread data in a short amount of time is relatively easy and very cost effective. Web scraping software is used every day for business applications, in the medical industry, for meteorology purposes, law enforcement, and government agencies.

Source:http://www.articlesbase.com/databases-articles/data-extraction-web-screen-scraping-tool-mozenda-scraper-3568330.html

Tuesday, 30 December 2014

How to scrape address from Google Maps

If you want to build a new online directory based website and want it to be popular with latest web contents, then you need the help of web scraping services from iWeb scraping. If you want to scrape address from maps.google.com, there is a specialized web scraping tool developed by iWeb scraping which can do the job for you. There are plenty of benefits with web scraping which includes market research, gathering customer information, managing product catalogs, compare prices, gather real estate data, gather job posting information etc. Web scraping technology is very popular nowadays and it saves lot of time and effort involved in manual extraction of data from websites.

The web scraping tools developed iWeb Scraping is very user-friendly and can extract specific information from targeted websites. It converts data from HTML web pages to useful formats like Excel spread sheets or Access database. Whatever web scraping requirements you have, you can contact iWeb Scraping as they have more than 3.5 years of web data extraction experience and offer the best prices in the industry. Also their services are available in 24x7 basis and free pilot projects will be done based on request.

Companies which require specific web data and look for an application which can automate the process and export the HTML data in structured format could benefit greatly from web scraping applications of iWeb scraping. You can easily extract data from multiple target websites, parse and re-assemble the information in HTML format to database or spread sheets as you wish. The application has simple point-and-click user-interface and any beginner can use it scrape address from Google Maps. If you want to gather address of people in particular region from Google maps, you can do it with help of web scraping application developed by iWebscraping.

Web Scraping is a technology that able to digest target website databases that are visible only as HTML web pages, and create a local, identical replica of those databases as a information or result. With our web scraping & web data extraction service we can capture web pages, then pin-point specific pieces of data/information you'd like to extract from web pages. What is needed in this process is much more than a Website crawler and set of Website wrappers. The time required to do web data extraction goes down in comparison to manually data copying and pasting job.

Source:http://www.articlesbase.com/information-technology-articles/how-to-scrape-address-from-google-maps-4683906.html

Saturday, 27 December 2014

So What Exactly Is A Private Data Scraping Services To Use You?

If your computer connects to the Internet or resources on the request for this information, and queries to different servers. If you have a website to introduce to the site server recognizes your computer's IP address and displays the data and much more. Many e - commerce sites use to log your IP address, and the browsing patterns for marketing purposes.

Related Articles

Follow Some Tips For Data Scraping Services

Web Data Scraping Assuring Scraping Success Proxy Data Services

Data Scraping Services with Proxy Data Scraping

Web Data Extraction Services for Data Collection - Screen Scrapping Services, Data Mining Services

The  Scraping server you connect to your destination or to process your information and make a filter. For example, IP address or protocol filtering traffic through a  Scraping service. As you might guess, there are many types of  Scraping services. including the ability to a high demand for the software. Email messages are quickly sent to businesses and companies to help you search for contacts.

Although there are Sanding free  Scraping IP addresses in this way can work, the use of payment services, and automatic user interface (plug and play) are easy to give.  Scraping web information services, thus offering a variety of relevant sources of data.  Scraping information service organizations are generally used where large amounts of data every day. It is possible for you to receive efficient, high precision is also affordable.

Information on the various strategies that companies,  Scraping excellent information services, and use the structure planned out and has led to the introduction of more rapid relief of the Earth.

In addition, the application software that has flexibility as a priority. In addition, there is a software that can be tailored to the needs of customers, and satisfy various customer requirements play a major role. Particular software, allows businesses to sell, a customer provides the features necessary to provide the best experience.

If you do not use a private Data Scraping Services suggest that you immediately start your Internet marketing. It is an inexpensive but vital to your marketing company. To choose how to set up a private  Scraping service, visit my blog for more information. Data Scraping Services software as the activity data and provides a large amount of information, Sorting. In this way, the company reduced the cost and time savings and greater return on investment will be a concept.

Without the steady stream of data from these sites to get stopped? Scraping HTML page requests sent by argument on the web server, depending on changes in production, it is very likely to break their staff. 

Data Scraping Services is common in the respective outsourcing company. Many companies outsource  Data Scraping Services service companies are increasingly outsourcing these services, and generally dealing with the Internet business-related activities, in particular a lot of money, can earn.

Web  Data Scraping Services, pull information from a structured plan format. Informal or semi-structured data source from the source.They are there to just work on your own server to extract data to execute. IP blocking is not a problem for them when they switch servers in minutes and back on track, scraping exercise. Try this service and you'll see what I mean.

It is an inexpensive but vital to your marketing company. To choose how to set up a private  Scraping service, visit my blog for more information. Data Scraping Services software as the activity data and provides a large amount of information, Sorting. In this way, the company reduced the cost and time savings and greater return on investment will be a concept.

Source:http://www.articlesbase.com/outsourcing-articles/so-what-exactly-is-a-private-data-scraping-services-to-use-you-5587140.html

Wednesday, 24 December 2014

Limitations and Challenges in Effective Web Data Mining

Web data mining and data collection is critical process for many business and market research firms today. Conventional Web data mining techniques involve search engines like Google, Yahoo, AOL, etc and keyword, directory and topic-based searches. Since the Web's existing structure cannot provide high-quality, definite and intelligent information, systematic web data mining may help you get desired business intelligence and relevant data.

Factors that affect the effectiveness of keyword-based searches include:

• Use of general or broad keywords on search engines result in millions of web pages, many of which are totally irrelevant.

• Similar or multi-variant keyword semantics my return ambiguous results. For an instant word panther could be an animal, sports accessory or movie name.

• It is quite possible that you may miss many highly relevant web pages that do not directly include the searched keyword.

The most important factor that prohibits deep web access is the effectiveness of search engine crawlers. Modern search engine crawlers or bot can not access the entire web due to bandwidth limitations. There are thousands of internet databases that can offer high-quality, editor scanned and well-maintained information, but are not accessed by the crawlers.

Almost all search engines have limited options for keyword query combination. For example Google and Yahoo provide option like phrase match or exact match to limit search results. It demands for more efforts and time to get most relevant information. Since human behavior and choices change over time, a web page needs to be updated more frequently to reflect these trends. Also, there is limited space for multi-dimensional web data mining since existing information search rely heavily on keyword-based indices, not the real data.

Above mentioned limitations and challenges have resulted in a quest for efficiently and effectively discover and use Web resources. Send us any of your queries regarding Web Data mining processes to explore the topic in more detail.

Source: http://ezinearticles.com/?Limitations-and-Challenges-in-Effective-Web-Data-Mining&id=5012994

Monday, 22 December 2014

GScholarXScraper: Hacking the GScholarScraper function with XPath

Kay Cichini recently wrote a word-cloud R function called GScholarScraper on his blog which when given a search string will scrape the associated search results returned by Google Scholar, across pages, and then produce a word-cloud visualisation.

This was of interest to me because around the same time I posted an independent Google Scholar scraper function  get_google_scholar_df() which does a similar job of the scraping part of Kay’s function using XPath (whereas he had used Regular Expressions). My function worked as follows: when given a Google Scholar URL it will extract as much information as it can from each search result on the URL webpage  into different columns of a dataframe structure.

In the comments of his blog post I figured it’d be fun to hack his function to provide an XPath alternative, GScholarXScraper. Essensially it’s still the same function he wrote and therefore full credit should go to Kay on this one as he fully deserves it – I certainly had no previous idea how to make a word cloud, plus I hadn’t used the tm package in ages (to the point where I’d forgotten most of it!). The main changes I made were as follows:

    Restructure internal code of GScholarScraper into a series of local functions which each do a seperate job (this made it easier for me to hack because I understood what was doing what and why).

    As far as possible, strip out Regular Expressions and replace with XPath alternatives (made possible via the XML package). Hence the change of name to GScholarXScraper. Basically, apart from a little messing about with the generation of the URLs I just copied over my get_google_scholar_df() function and removed the Regular Expression alternatives. I’m not saying one is better than the other but f0r me personally, I find XPath shorter and quicker to code but either is a good approach for web scraping like this (note to self: I really need to lean more about regular expressions!) :)

•    Vectorise a few of the loops I saw (it surprises me how second nature this has become to me – I used to find the *apply family of functions rather confusing but thankfully not so much any more!).
•    Make use of getURL from the RCurl package (I was getting some mutibyte string problems originally when using readLines but this approach automatically fixed it for me).
•    Add option to make a word-cloud from either the “title” or the “description” fields of the Google Scholar search results
•    Added steaming via the Rstem package because I couldn’t get the Snowball package to install with my version of java. This was important to me because I was getting word clouds with variations of the same word on it e.g. “game”, “games”, “gaming”.
•    Forced use of URLencode() on generation of URLs to automatically avoid problems with search terms like “Baldur’s Gate” which would otherwise fail.

I think that’s pretty much everything I added. Anyway, here’s how it works (link to full code at end of post):

</pre>
<div id="LC198"># #EXAMPLE 1: Display word cloud based on the title field of each Google Scholar search result returned</div>
<div id="LC199"># GScholarXScraper(search.str = "Baldur's Gate", field = "title", write.table = FALSE, stem = TRUE)</div>
<div id="LC200">#</div>
<div id="LC201"># # word freq</div>
<div id="LC202"># # game game 71</div>
<div id="LC203"># # comput comput 22</div>
<div id="LC204"># # video video 13</div>
<div id="LC205"># # learn learn 11</div>
<div id="LC206"># # [TRUNC...]</div>
<div id="LC207"># #</div>
<div id="LC208"># #</div>
<div id="LC209"># # Number of titles submitted = 210</div>
<div id="LC210"># #</div>
<div id="LC211"># # Number of results as retrieved from first webpage = 267</div>
<div id="LC212"># #</div>
<div id="LC213"># # Be aware that sometimes titles in Google Scholar outputs are truncated - that is why, i.e., some mandatory intitle-search strings may not be contained in all titles</div>

<pre>

// image

I think that’s kind of cool and corresponds to what I would expect for a search about the legendary Baldur’s Gate computer role playing game :)  The following is produced if we look at the ‘description’ filed instead of the ‘title’ field:

</pre>

<div id="LC215"># # EXAMPLE 2: Display word cloud based on the description field of each Google Scholar search result returned</div>
<div id="LC216">GScholarXScraper(search.str = "Baldur's Gate", field = "description", write.table = FALSE, stem = TRUE)</div>
<div id="LC217">#</div>
<div id="LC218"># # word freq</div>
<div id="LC219"># # page page 147</div>
<div id="LC220"># # gate gate 132</div>
<div id="LC221"># # game game 130</div>
<div id="LC222"># # baldur baldur 129</div>
<div id="LC223"># # roleplay roleplay 21</div>
<div id="LC224"># # [TRUNC...]</div>
<div id="LC225"># #</div>
<div id="LC226"># # Number of titles submitted = 210</div>
<div id="LC227"># #</div>
<div id="LC228"># # Number of results as retrieved from first webpage = 267</div>
<div id="LC229"># #</div>
<div id="LC230"># # Be aware that sometimes titles in Google Scholar outputs are truncated - that is why, i.e., some mandatory intitle-search strings may not be contained in all titles</div>
<pre>

//image

Not bad. I could see myself using the text mining and word cloud functionality with other projects I’ve been playing with such as Facebook, Google+, Yahoo search pages, Google search pages, Bing search pages… could be fun!

Many thanks again to Kay for making his code publicly available so that I could play with it and improve my programming skill set.

Code:

Full code for GScholarXScraper can be found here: https://github.com/tonybreyal/Blog-Reference-Functions/blob/master/R/GScholarXScraper/GScholarXScraper

Original GSchloarScraper code is here: https://docs.google.com/document/d/1w_7niLqTUT0hmLxMfPEB7pGiA6MXoZBy6qPsKsEe_O0/edit?hl=en_US

Full code for just the XPath scraping function is here: https://github.com/tonybreyal/Blog-Reference-Functions/blob/master/R/googleScholarXScraper/googleScholarXScraper.R

Source:http://www.r-bloggers.com/gscholarxscraper-hacking-the-gscholarscraper-function-with-xpath/

Thursday, 18 December 2014

Extractions and Skin Care

As an esthetician or skin care professional, you may have heard some controversy over the matter of performing extractions during a routine facial service. What may seem like a relatively simple procedure can actually raise great controversy in the world of esthetics. Some estheticians regard extractions as a matter of providing a complete service while others see this as inflicting trauma to the skin. Learning more about both sides of the issue can help you as a professional in making an informed decision and explaining the issue to your clients.

What is an extraction?

As a basic review, an extraction is removing impurity (plug of dead skin or oil) from a pore or pimple. It is the removal of both blackheads and whiteheads from the skin. Extractions occur after the skin has been thoroughly cleansed, exfoliated and sometimes steamed to soften the area prior to extraction.

Why Do It?

Extractions are considered a "must" by many estheticians when performing a routine facial because they want to leave their clients skin looking and feeling it's best. When done correctly, a simple extraction should be quick and relatively painless. As a trained esthetician it is important to know if your client has sensitive skin which would make them more prone to the damage that can be caused by extractions.

Why Not?

Extractions should only be performed by a trained esthetician and should not be done in excess. Extractions can cause broken capillaries or sin irritations that can lead to more (not less) breakouts. Extractions can also cause discomfort for your client when done incorrectly so you should seek their permission before performing any type of extraction during their facial. Remember your client has the right to know any product or procedure being performed on their skin and make an informed choice.

Who Decides?

As an esthetician it may be entirely up to you or it may be a procedure within your salon to do or not do extractions. It is important to check the guidelines of your employer and know their policies before performing any procedure. Remember to explain extractions and their benefits and possible complications to your client. Trust is an important part of any relationship and your client needs to know you are being open and honest with them. The last thing you want as a professional is a reputation for inflicting unnecessary and unwanted procedures or damage to your client's skin.

Bellanina Institute's owner and director, Nina Howard, is a multi-talented, forward-thinking entrepreneur who has built the Bellanina brand form the ground up to a successful million-dollar spa, spa training business, and skin care product line. Nina is a Licensed Esthetician with Para-Medical studies, Massage Therapist, Polarity Therapist, Skin Care Educator, Artist, and Professional Interior Designer.

Source:http://ezinearticles.com/?Extractions-and-Skin-Care&id=5271715

Tuesday, 16 December 2014

Benefits of Predictive Analytics and Data Mining Services

Predictive Analytics is the process of dealing with variety of data and apply various mathematical formulas to discover the best decision for a given situation. Predictive analytics gives your company a competitive edge and can be used to improve ROI substantially. It is the decision science that removes guesswork out of the decision-making process and applies proven scientific guidelines to find right solution in the shortest time possible.

Predictive analytics can be helpful in answering questions like:

•    Who are most likely to respond to your offer?
•    Who are most likely to ignore?
•    Who are most likely to discontinue your service?
•    How much a consumer will spend on your product?
•    Which transaction is a fraud?
•    Which insurance claim is a fraudulent?
•    What resource should I dedicate at a given time?

Benefits of Data mining include:

•    Better understanding of customer behavior propels better decision
•    Profitable customers can be spotted fast and served accordingly
•    Generate more business by reaching hidden markets
•    Target your Marketing message more effectively
•    Helps in minimizing risk and improves ROI.
•    Improve profitability by detecting abnormal patterns in sales, claims, transactions etc
•    Improved customer service and confidence
•    Significant reduction in Direct Marketing expenses

Basic steps of Predictive Analytics are as follows:

•    Spot the business problem or goal
•    Explore various data sources such as transaction history, user demography, catalog details, etc)
•    Extract different data patterns from the above data
•    Build a sample model based on data & problem
•    Classify data, find valuable factors, generate new variables
•    Construct a Predictive model using sample
•    Validate and Deploy this Model

Standard techniques used for it are:

•    Decision Tree
•    Multi-purpose Scaling
•    Linear Regressions
•    Logistic Regressions
•    Factor Analytics
•    Genetic Algorithms
•    Cluster Analytics
•    Product Association

Should you have any queries regarding Data Mining or Predictive Analytics applications, please feel free to contact us. We would be pleased to answer each of your queries in detail.

Source:http://ezinearticles.com/?Benefits-of-Predictive-Analytics-and-Data-Mining-Services&id=4766989

Monday, 15 December 2014

RAM Scraping a New Old Favorite For Hackers

Some of the best stories involve a conflict with an old enemy: a friend-turned-foe, long thought dead, returning from the grave for violent retribution; an ancient order of dark siders from the distant reaches of the galaxy, hiding in plain sight and waiting to seize power for themselves; a dark lord thought destroyed millennia ago, only to rise again and seek his favorite piece of jewelry.  The list goes on.

Granted, 2011 isn’t quite “millennia,” and this story isn’t meant for entertainment, but the old foe in this instance is nonetheless dangerous in its own right.  That is the year when RAM scraping malware first made major headlines: originating as an advanced version of the Trackr malware, controlled through a botnet, it was discovered in the compromised Point of Sale (POS) systems of a university and several hotels.  And while it seemed recently that this method had dwindled in popularity, the Target and other retail breaches saw it return with a vengeance.  With 110 million Target customers having their information compromised, it was easily one the largest incidents involving memory scrapers.

How does it work?  First, the malware has to be introduced into the POS network, which can happen via any machine that is connected to the network, or unsecured wireless networks.  Even with firewalls, an infected laptop could serve as a vector.  Once installed, the malware can hide in the shadows, employing encryption or antivirus-avoiding tools to prevent its identification until it’s ready to strike.  Then, when a customer’s card gets used at a POS machine, the data contained within—name, card number, security code, etc.—gets sent to the system memory.  “There is that opportunity to steal the credit card information when it is in memory, perhaps even before your payment has even been authorized, and the data hasn't even been written to the hard drive yet,” says security researcher Graham Cluley.

So, why not encrypt the system’s memory, when it’s at its most vulnerable?  Not that simple, sadly: “No matter how strong your encryption is, if the system needs to process data or process the code, everything needs to be decrypted in memory,” Chris Elisan, principal malware scientist at security firm RSA, explained to Dark Reading.

There are certain steps a company can take, of course, and should take, to reduce the risk.  Strong passwords to access the POS machines, firewalls to isolate the POS network from the Internet, disabling remote access to POS systems, to name a few.  All the same, while these measures are vital and should be used, I don’t think, in light of recent breaches, they are sufficient.  Now, I wrote a short time ago about the impending October 2014 deadline imposed by the credit card industry, regarding the systematic switch to chipped credit card technology; adopting this standard will definitely assist in eradicating this problem.  But, until such a time when a widespread implementation of new systems comes about, always be vigilant to protect your data from attack, because what’s old is new again, and a colossal data breach is a story consumers are liable to seek financial restitution for.

Source:http://www.netlib.com/blog/application-security/RAM-Scraping-a-New-Old-Favorite-For-Hackers.asp

Saturday, 13 December 2014

Microfinance Data Scraping

I went to the Datakind‘s New York Datadive last November and met the Microfinance Information Exchange (MIX), a group that ‘delivers data services, analysis, research and business information on the institutions that provide financial services to the world’s poor’. They wanted to see whether web-scraping could save them from manually gathering data. So fellow divers and I showed MIX the utility of web-scraping. Over the course of a day, about six people scraped data about microfinance institutions from a bunch of websites, saving MIX an estimated year of manual data entry.

Over the past few months, I worked further with MIX to study who has access to what sorts of financial services. DataKind just put up our blog post about the project. Read the post, or just look at the map and explore the data.

Source:https://blog.scraperwiki.com/2012/05/microfinance-data-scraping/

Thursday, 11 December 2014

Content Scraping Reuses Blog Posts without Permission

What do popular blogs and websites such as Social Media Examiner, Copy Blogger, CNN.com, Mashable, and Type A Parent have in common? No, it’s not traffic and a loyal online community, each was a victim of the content scraping site “BuzzMyFx.” Although most bloggers fall victim to content scrapers at least once, the offending website was such an extreme case the backlash against it was fast and furious. Thanks to the quick action of many angry bloggers, BuzzMyFix was taken down in a matter of days.

If you’re not familiar with content scraping sites and aren’t sure why they’re bad and what you can do if you fall prey, read on. Not knowing what steps you can take to remove your content from a scraping site can mean someone else is profiting from your hard work.

What is content scraping?

Content scraping is when a blog or website pulls in other bloggers’ content without permission, in many cases passing it off as their own. Instead of stocking their sites with unique content, they steal entire blog posts. Some do leave the original authors’ bylines, but there are plenty that don’t provide attribution at all. This is not a good thing at all.

If you don’t care about someone taking your content and putting it on their blogs and websites without your permission, you should. These sites are stealing traffic, search engine rankings, and even advertising revenue from bloggers. Moreover, by ignoring scraping sites you’re giving the message that this practice is OK.

It’s not OK.

How was BuzzMyFx different?

BuzzMyFx was a little different from your usual scrapers. Bloggers didn’t just find their content had been posted on this site, they learned their entire blogs — down to the design and comments — had been cloned. Plus, any bloggers checking to see if their blogs were being cloned immediately found themselves being scraped as well. Dozens, if not hundreds of blogs were affected. However, bloggers didn’t take this incident sitting down. They spread the word and contacted the site’s host en masse. Thanks to their swift action, and the high number of complaints, the site was removed quickly.

How can I tell if my content is being scraped?

Fortunately for content creators, scrapers are a lazy bunch. Because their sites are automated, and they don’t check or read the content being pulled, they don’t take many precautions to ensure the people they scrape from don’t find their sites. In fact, they may not even care. Fortunately, this makes it easy to learn if your content is being stolen.

    Link to your own articles — When you write a blog post and link to other (of your own) blog posts within that post, it’s not only good SEO. You also will get pingbacks whenever someone else steals your content because of your interlinks. You’re alerted when someone links to your content, and when content is published with your links, you’ll get that alert.

    Google Alerts — If your name, blog’s name, or other unique keywords are set up as Google Alerts, you’ll receive an e-mail every time content is published with these keywords.

    Analytics — When people click on your links that are in scraped content, it will show up as referring traffic in your analytics program. You should always check referring traffic so you can thank the referring site owner, but also to make sure no one is stealing your content.

What steps can I take to remove my content from a scraper?

If you find your content is being stolen, know you have several options. First, you’ll need to find out who owns the scraping site. You can find this out by doing a WHOis domain lookup, which will enable you to search for the website’s details, including the name of the webmaster, contact info, and the name of the site’s host.

Keep in mind that sometimes the website’s owner will pay extra to have his or her name kept private, but you will always be able to find the name of the host. Once you have this information, you can take the necessary steps to have your content removed.

    Contact the site’s owner personally: Your first step should always be a polite request to remove your content immediately. Let the website owner know he or she is in violation of the Digital Millennium Copyright Act (DMCA), and you will take the necessary steps to report him if he doesn’t comply.

    Contact the site’s host: If you can’t find the name of the person who owns the site, or if he won’t comply with your takedown request, contact the website’s host. You’ll have to prove your content is being stolen. As the host can be held liable for allowing the content theft, it’s in their best interest to contact the website owner and request removal.

    Contact Google: You can contact Google and fill out a form to have them remove the website from their search engines.

    Spread the word: Let all your blogging friends know about content scrapers when you come across them. The more people who take action against content scrapers, the less likely they are to do it again.

Contacting the webmaster with a takedown notice doesn’t have to be an intimidating process, either. The website Plagiarism Today has a wonderful set of stock letters to use to contact webmasters, web hosts, and even Google. All you have to do is insert the necessary information.

Content scrapers and cloners may try to steal your content, but you don’t have to let them. Stand up for what’s yours.

Source: http://www.dummies.com/how-to/content/content-scraping-reuses-blog-posts-without-permiss.html

Thursday, 4 December 2014

Finding & Removing Spam Blogs Who Scrape Content Onto Free Hosted Blogs

The more popular you become in the blogging world, the more crap you have to deal with!
Content scraping is one chore that can be dealt with swiftly once you understand what to do.
This post contains links which you can use to quickly and easily report content scrapers and spam blogs.
Please share this post and help clean up spam blogs and punish content scrapers.
First step is to find your url’s which have been scraped of content and then get the scrapers spam blog removed.

Some of the tools i use to do this are:

    Google Webmaster Tools
    Google Alerts


Finding Scraped Content
Login to your Google Webmaster Tools account and go to traffic > links to your site.
You should see something like this:
Webmaster Tools Links to Your Site

The first domain is a site which has copied and embedded my homepage which i have already dealt with.
The second site is a search engine.
The third domain is the one i want to deal with.

A common method scrapers use is to post the scraped content from your rss feed on to a free hosted blog like WordPress.com or blogger.com.

Once you click the WordPress.com link in webmaster tools, you’ll find all the url’s which have been scraped.
Links to Your Site

There’s 32 url’s which have been linked to so its simply a matter of clicking each of your links and finding the culprits.

The first link is my homepage which has been linked to by legit domains like WordPress developers.
The others are mainly linked to by spam blogs who have scraped the content and used a free hosted service which in this case is WordPress.com.
WordPress.com Links to Your Site
 Reporting & Removing Spam Blogs

Once you have the url’s of the content scraping blogs as seen in the screenshot above:

    Fill in this basic form to report spam to WordPress.com
    Fill in this form to report copyright content to WordPress.com
    Use this form to report Blogspot and Blogger.com content which has been scraped.
    Fill in one of these forms to remove content from Google

Google Alerts

Its very easy to setup a Google alert to find your post titles when they get scraped.
If you’ve setup the WordPress SEO plugin correctly, you should have included your site title at the end of all your post titles.
Then all you need to do is setup a Google alert for your site title and you’ll be notified every time a scraper links to your content.

Link Notifications

You may also receive a pingback or trackback if you have this feature enabled in your discussion settings.

Link Notifications
RSS Feed Links

Most content scrapers use automated software to scrape the content from RSS feeds.
Make sure you configure your Reading settings so only a summary is displayed.
Reading Settings Feed Summary

Next step is to configure the settings in Yoast’s SEO plugin so links back to your site are included in all RSS feed post summaries.

RSS Feed Links

This will help search engines identify you and your domain as the original author of the content.
There’s other services like copyscape and dmca which can help you protect your sites content if you’re prepared to pay a premium.
That’s it folks.
Its easy to find and get spam sites removed once you know what to do.
Hope you don’t have to deal with this garbage to often.
Ever found out your content has been scraped?
What did you do about it?

Source: http://wpsites.net/blogging/content-scraping-monitoring-and-prevention-tips/

Sunday, 30 November 2014

What you have to know before requesting web scraping services?

Before you request web scraping services you have to know what are your needs (what data you need, structure of it and where you can find this data).

Step 1: Define what data you need?

Data needs depending on purpose, if you want to find new customers you probably need contact data from players in your industry. Also if you want to study your competitors you need to define who are they. Only after that you can select data sources (websites feeds or other electronic sources) for this extraction.

In many cases for discovering and defining data sources are used search engines like Google, Bing, Yahoo, and others.

Step 2: Structure of data

Data structure it’s directly linked to usage purpose. In many cases data structure it’s a table where a row represents an entity and a cell of this row represents a property of this entity. In other cases Data structure is a a chart or another graphic representation builder with data extracted from a web source.

Step 3: Number of data extraction

In many cases is needed one time data extraction. In other cases when you need a regular report, are needed periodically extractions.

If you have defined all of above points you are ready to request a quote and an amount estimation from this contact form.

Source: http://thewebminer.com/blog/2013/08/

Thursday, 27 November 2014

Scraping XML Tables with R

A couple of my good friends also recently started a sports analytics blog. We’ve decided to collaborate on a couple of studies revolving around NBA data found at www.basketball-reference.com. This will be the first part of that project!

Data scientists need data. The internet has lots of data. How can I get that data into R? Scrape it!

People have been scraping websites for as long as there have been websites. It’s gotten pretty easy using R/Python/whatever other tool you want to use. This post shows how to use R to scrape the demographic information for all NBA and ABA players listed at www.basketball-reference.com.

Here’s the code:

###### Settings

library(XML)

 ###### URLs

url<-paste0("http://www.basketball-reference.com/players/",letters,"/")

len<-length(url)

 ###### Reading data

tbl<-readHTMLTable(url[1])[[1]]

 for (i in 2:len)

    {tbl<-rbind(tbl,readHTMLTable(url[i])[[1]])}

 ###### Formatting data

colnames(tbl)<-c("Name","StartYear","EndYear","Position","Height","Weight","BirthDate","College")

tbl$BirthDate<-as.Date(tbl$BirthDate[1],format="%B %d, %Y")

Created by Pretty R at inside-R.org

And here’s the result:Result

Source: http://www.r-bloggers.com/scraping-xml-tables-with-r/

Wednesday, 26 November 2014

Data Mining KNN Classifier

Q1   

Suppose a data analyst working for an insurance company was asked to build a predictive model for predicting weather a customer will buy a mobile home insurance policy. S/he tried kNN classifier with different number of neighbours (k=1,2,3,4,5). S/he got the following F-scores measured on the training data: (1.0; 0.92; 0.90; 0.85; 0.82). Based on that the analyst decided to deploy kNN with k=1. Was it a good choice? How would you select an optimal number of neighbours in this case?

1 Answer

It is not a good idea to select a parameter of a prediction algorithm using the whole training set as the result will be biased towards this particular training set and has no information about generalization performance (i.e. performance towards unseen cases). You should apply a cross-validation technique e.g. 10-fold cross-validation to select the best K (i.e. K with largest F-value) within a range. This involves splitting your training data in 10 equal parts retain 9 parts for training and 1 for validation. Iterate such that each part has been left out for validation. If you take enough folds this will allow you as well to obtain statistics of the F-value and then you can test whether these values for different K values are statistically significant.

See e.g. also: http://pic.dhe.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Falg_knn_training_crossvalidation.htm

The subtlety here however is that there is likely a dependency between the number of data points for prediction and the K-value. So If you apply cross-validation you use 9/10 of the training set for training...Not sure whether any research has been performed on this and how to correct for that in the final training set. Anyway most software packages just use the abovementioned techniques e.g. see SPSS in the link. A solution is to use leave-one-out cross-validation (each data samples is left out once for testing) in that case you have N-1 training samples(the original training set has N).

Source:http://stackoverflow.com/questions/21121509/data-mining-knn-classifier?rq=1

Sunday, 23 November 2014

A Content Marketer's Guide to Data Scraping

As digital marketers, big data should be what we use to inform a lot of the decisions we make. Using intelligence to understand what works within your industry is absolutely crucial within content campaigns, but it blows my mind to know that so many businesses aren't focusing on it.

One reason I often hear from businesses is that they don't have the budget to invest in complex and expensive tools that can feed in reams of data to them. That said, you don't always need to invest in expensive tools to gather valuable intelligence — this is where data scraping comes in.

Just so you understand, here's a very brief overview of what data scraping is from Wikipedia:

    "Data scraping is a technique in which a computer program extracts data from human-readable output coming from another program."

Essentially, it involves crawling through a web page and gathering nuggets of information that you can use for your analysis. For example, you could search through a site like Search Engine Land and scrape the author names of each of the posts that have been published, and then you could correlate this to social share data to find who the top performing authors are on that website.

Hopefully, you can start to see how this data can be valuable. What's more, it doesn't require any coding knowledge — if you're able to follow my simple instructions, you can start gathering information that will inform your content campaigns. I've recently used this research to help me get a post published on the front page of BuzzFeed, getting viewed over 100,000 times and channeling a huge amount of traffic through to my blog.

Disclaimer: One thing that I really need to stress before you read on is the fact that scraping a website may breach its terms of service. You should ensure that this isn't the case before carrying out any scraping activities. For example, Twitter completely prohibits the scraping of information on their site. This is from their Terms of Service:

    "crawling the Services is permissible if done in accordance with the provisions of the robots.txt file, however, scraping the Services without the prior consent of Twitter is expressly prohibited"

Google similarly forbids the scraping of content from their web properties:

    Google's Terms of Service do not allow the sending of automated queries of any sort to our system without express permission in advance from Google.

So be careful, kids.
Content analysis

Mastering the basics of data scraping will open up a whole new world of possibilities for content analysis. I'd advise any content marketer (or at least a member of their team) to get clued up on this.

Before I get started on the specific examples, you'll need to ensure that you have Microsoft Excel on your computer (everyone should have Excel!) and also the SEO Tools plugin for Excel (free download here). I put together a full tutorial on using the SEO tools plugin that you may also be interested in.

Alongside this, you'll want a web crawling tool like Screaming Frog's SEO Spider or Xenu Link Sleuth (both have free options). Once you've got these set up, you'll be able to do everything that I outline below.

So here are some ways in which you can use scraping to analyse content and how this can be applied into your content marketing campaigns:

1. Finding the different authors of a blog

Analysing big publications and blogs to find who the influential authors are can give you some really valuable data. Once you have a list of all the authors on a blog, you can find out which of those have created content that has performed well on social media, had a lot of engagement within the comments and also gather extra stats around their social following, etc.

I use this information on a daily basis to build relationships with influential writers and get my content placed on top tier websites. Here's how you can do it:

Step 1: Gather a list of the URLs from the domain you're analysing using Screaming Frog's SEO Spider. Simply add the root domain into Screaming Frog's interface and hit start (if you haven't used this tool before, you can check out my tutorial here).

Once the tool has finished gathering all the URLs (this can take a little while for big websites), simply export them all to an Excel spreadsheet.

Step 2: Open up Google Chrome and navigate to one of the article pages of the domain you're analysing and find where they mention the author's name (this is usually within an author bio section or underneath the post title). Once you've found this, right-click their name and select inspect element (this will bring up the Chrome developer console).

Within the developer console, the line of code associated to the author's name that you selected will be highlighted (see the below image). All you need to do now is right-click on the highlighted line of code and press Copy XPath.

For the Search Engine Land website, the following code would be copied:

//*[@id="leftCol"]/div[2]/p/span/a

This may not make any sense to you at this stage, but bear with me and you'll see how it works.

Step 3: Go back to your spreadsheet of URLs and get rid of all the extra information that Screaming Frog gives you, leaving just the list of raw URLs – add these to the first column (column A) of your worksheet.

Step 4: In cell B2, add the following formula:

=XPathOnUrl(A2,"//*[@id='leftCol']/div[2]/p/span/a")

Just to break this formula down for you, the function XPathOnUrl allows you to use the XPath code directly within (this is with the SEO Tools plugin installed; it won't work without this). The first element of the function specifies which URL we are going to scrape. In this instance I've selected cell A2, which contains a URL from the crawl I did within Screaming Frog (alternatively, you could just type the URL, making sure that you wrap it within quotation marks).

Finally, the last part of the function is our XPath code that we gathered. One thing to note is that you have to remove the quotation marks from the code and replace them with apostrophes. In this example, I'm referring to the "leftCol" section, which I've changed to ‘leftCol' — if you don't do this, Excel won't read the formula correctly.

Once you press enter, there may be a couple of seconds delay whilst the SEO Tools plugin crawls the page, then it will return a result. It's worth mentioning that within the example I've given above, we're looking for author names on article pages, so if I try to run this on a URL that isn't an article (e.g. the homepage) I will get an error.

For those interested, the XPath code itself works by starting at the top of the code of the URL specified and following the instructions outlined to find on-page elements and return results. So, for the following code:

//*[@id='leftCol']/div[2]/p/span/a

We're telling it to look for any element (//*) that has an id of leftCol (@id='leftCol') and then go down to the second div tag after this (div[2]), followed by a p tag, a span tag and finally, an a tag (/p/span/a). The result returned should be the text within this a tag.

Don't worry if you don't understand this, but if you do, it will help you to create your own XPath. For example, if you wanted to grab the output of an a tag that has rel=author attached to it (another great way of finding page authors), then you could use some XPath that looked a little something like this:

//a[@rel='author']

As a full formula within Excel it would look something like this:

=XPathOnUrl(A2,"//a[@rel='author']")

Once you've created the formula, you can drag it down and apply it to a large number of URLs all at once. This is a huge time-saver as you'd have to manually go through each website and copy/paste each author to get the same results without scraping – I don't need to explain how long this would take.

Now that I've explained the basics, I'll show you some other ways in which scraping can be used…

2. Finding extra details around page authors

So, we've found a list of author names, which is great, but to really get some more insight into the authors we will need more data. Again, this can often be scraped from the website you're analysing.

Most blogs/publications that list the names of the article author will actually have individual author pages. Again, using Search Engine Land as an example, if you click my name at the top of this post you will be taken to a page that has more details on me, including my Twitter profile, Google+ profile and LinkedIn profile. This is the kind of data that I'd want to gather because it gives me a point of contact for the author I'm looking to get in touch with.

Here's how you can do it.

Step 1: First we need to get the author profile URLs so that we can scrape the extra details off of them. To do this, you can use the same approach to find the author's name, with just a little addition to the formula:

=XPathOnUrl(A2,"//a[@rel='author']", <strong>"href"</strong>)

The addition of the "href" part of the formula will extract the output of the href attribute of the atag. In Lehman terms, it will find the hyperlink attached to the author name and return that URL as a result.

Step 2: Now that we have the author profile page URLs, you can go on and gather the social media profiles. Instead of scraping the article URLs, we'll be using the profile URLs.

So, like last time, we need to find the XPath code to gather the Twitter, Google+ and LinkedIn links. To do this, open up Google Chrome and navigate to one of the author profile pages, right-click on the Twitter link and select Inspect Element.

Once you've done this, hover over the highlighted line of code within Chrome's developer tools, right-click and select Copy XPath.

Step 3: Finally, open up your Excel spreadsheet and add in the following formula (using the XPath that you've copied over):

=XPathOnUrl(C2,"//*[@id='leftCol']/div[2]/p/a[2]", "href")

Remember that this is the code for scraping Search Engine Land, so if you're doing this on a different website, it will almost certainly be different. One important thing to highlight here is that I've selected cell C2 here, which contains the URL of the author profile page and not just the article page. As well as this, you'll notice that I've included "href" at the end because we want the actual Twitter profile URL and not just the words ‘Twitter'.

You can now repeat this same process to get the Google+ and LinkedIn profile URLs and add it to your spreadsheet. Hopefully you're starting to see the value in this, and how it can be used to gather a lot of intelligence that can be used for all kinds of online activity, not least your SEO and social media campaigns.

3. Gathering the follower counts across social networks

Now that we have the author's social media accounts, it makes sense to get their follower counts so that they can be ranked based on influence within the spreadsheet.

Here are the final XPath formulae that you can plug straight into Excel for each network to get their follower counts. All you'll need to do is replace the text INSERT SOCIAL PROFILE URL with the cell reference to the Google+/LinkedIn URL:

Google+:

=XPathOnUrl(<strong>INSERTGOOGLEPROFILEURL</strong>,"//span[@class='BOfSxb']")

LinkedIn:

=XPathOnUrl(<strong>INSERTLINKEDINURL</strong>,"//dd[@class='overview-connections']/p/strong")

4. Scraping page titles

Once you've got a list of URLs, you're going to want to get an idea of what the content is actually about. Using this quick bit of XPath against any URL will display the title of the page:

=XPathOnUrl(A2,"//title")

To be fair, if you're using the SEO Tools plugin for Excel then you can just use the built-in feature to scrape page titles, but it's always handy to know how to do it manually!

A nice extra touch for analysis is to look at the number of words used within the page titles. To do this, use the following formula:

=CountWords(A2)

From this you can get an understanding of what the optimum title length of a post within a website is. This is really handy if you're pitching an article to a specific publication. If you make the post the best possible fit for the site and back up your decisions with historical data, you stand a much better chance of success.

Taking this a step further, you can gather the social shares for each URL using the following functions:

Twitter:

=TwitterCount(<strong>INSERTURLHERE</strong>)

Facebook:

=FacebookLikes(<strong>INSERTURLHERE</strong>)

Google+:

=GooglePlusCount(<strong>INSERTURLHERE</strong>)

Note: You can also use a tool like URL Profiler to pull in this data, which is much better for large data sets. The tool also helps you to gather large chunks of data from other social networks, link data sources like Ahrefs, Majestic SEO and Moz, which is awesome.

If you want to get even more social stats then you can use the SharedCount API, and this is how you go about doing it…

Firstly, create a new column in your Excel spreadsheet and add the following formula (where A2 is the URL of the webpage you want to gather social stats for):

=CONCATENATE("http://api.sharedcount.com/?url=",A2)

You should now have a cell that contains your webpage URL prefixed with the SharedCount API URL. This is what we will use to gather social stats. Now here's the Excel formula to use for each network (where B2 is the cell that contaiins the formula above):

StumbleUpon:

=JsonPathOnUrl(B2,"StumbleUpon")

Reddit:

=JsonPathOnUrl(B2,"Reddit")

Delicious:

=JsonPathOnUrl(B2,"Delicious")

Digg:

=JsonPathOnUrl(B2,"Diggs")

Pinterest:

=JsonPathOnUrl(B2,"Pinterest")

LinkedIn:

=JsonPathOnUrl(B2,"Linkedin")

Facebook Shares:

=JsonPathOnUrl(B2,"Facebook.share_count")

Facebook Comments:

=JsonPathOnUrl(B2,"Facebook.comment_count")

Once you have this data, you can start looking much deeper into the elements of a successful post. Here's an example of a chart that I created around a large sample of articles that I analysed within Upworthy.com.

The chart looks at the average number of social shares that an article on Upworthy receives vs the number of words within its title. This is invaluable data that can be used across a whole host of different on-page elements to get the perfect article template for the site you're pitching to.

See, big data is useful!

5. Date/time the post was published

Along with analysing the details of headlines that are working within a site, you may want to look at the optimal posting times for best results. This is something that I regularly do within my blogs to ensure that I'm getting the best possible return from the time I spend writing.

Every site is different, which makes it very difficult for an automated, one-size-fits-all tool to gather this information. Some sites will have this data within the <head> section of their webpages, but others will display it directly under the article headline. Again, Search Engine Land is a perfect example of a website doing this…

So here's how you can scrape this information from the articles on Search Engine Land:

=XPathOnUrl(<strong>INSERTARTICLEURL</strong>,"//*[@class='dateline']/text()")

Now you've got the date and time of the post. You may want to trim this down and reformat it for your data analysis, but you've got it all in Excel so that should be pretty easy.

Extra reading

Data scraping is seriously powerful, and once you've had a bit of a play around with it you'll also realise that it's not that complicated. The examples that I've given are just a starting point but once you get your creative head on, you'll soon start to see the opportunities that arise from this intelligence.

Here's some extra reading that you might find useful:

    http://findmyblogway.com/scraping-communities-with-xpath/

    http://builtvisible.com/data-entry-is-a-waste-of-time/

    http://www.seotakeaways.com/data-scraping-guide-for-seo/

    http://okdork.com/2014/04/30/the-step-by-step-guide-to-10x-growth-for-any-blog/

TL;DR

    Start using actual data to inform your content campaigns instead of going on your gut feeling.

    Gather intelligence around specific domains you want to target for content placement and create the perfect post for their audience.

    Get clued up on XPath and JSON through using the SEO Tools plugin for Excel.

    Spend more time analysing what content will get you results as opposed to what sites will give you links!

    Check the website's ToS before scraping.

Source:http://moz.com/blog/a-content-marketers-guide-to-data-scraping

Wednesday, 19 November 2014

NHL ending dry scraping of ice before overtime

TORONTO (AP) — The NHL will no longer dry scrape the ice before overtime.
Instituted this season in an effort to reduce the number of shootouts, the dry scraping will stop after Friday's games.

The general managers decided at their meeting Tuesday to make the change after the league talked to the players' union the past few days.

Beginning Saturday, ice crews around the league will again shovel the ice after regulation as they did in previous years. The GMs said the dry scrape was causing too much of a delay. Director of hockey operations Colin Campbell said the delays were lasting from more than four minutes to almost seven.

The dry scrape initially had been approved in hopes of reducing shootouts by improving scoring chances without unduly slowing play by recoating the ice.

The GMs also discussed expanded video review, including goaltender interference, and the possibility of three-on-three overtime. The American Hockey League is experimenting with the three-on-three format this season.

This annual meeting the day after the Hockey Hall of Fame induction usually doesn't produce actual changes, with the dry scrape providing an exception.

The main purpose is to set up the March meeting in Boca Raton, Florida, where these items will be further addressed.

Source:http://missoulian.com/sports/hockey/nhl-ending-dry-scraping-of-ice-before-overtime/article_3dd5473c-6102-5800-99f7-2c98be0f99ad.html

Monday, 17 November 2014

Scraping websites using the Scraper extension for Chrome

If you are using Google Chrome there is a browser extension for scraping web pages. It’s called “Scraper” and it is easy to use. It will help you scrape a website’s content and upload the results to google docs.

Walkthrough: Scraping a website with the Scraper extension
  •     Open Google Chrome and click on Chrome Web Store
  •     Search for “Scraper” in extensions
  •     The first search result is the “Scraper” extension
  •     Click the add to chrome button.
  •     Now let’s go back to the listing of UK MPs
  •     Open http://www.parliament.uk/mps-lords-and-offices/mps/
  •     Now mark the entry for one MP
  •     http://farm9.staticflickr.com/8490/8264509932_6cc8802992_o_d.png
  •     Right click and select “scrape similar…”
  •     http://farm9.staticflickr.com/8200/8264509972_f3a9e5d8e8_o_d.png
  •     A new window will appear – the scraper console
  •     http://farm9.staticflickr.com/8073/8263440961_9b94e63d56_b_d.jpg
  •     In the scraper console you will see the scraped content
  •     Click on “Save to Google Docs…” to save the scraped content as a Google Spreadsheet.
Walkthrough: extended scraping with the Scraper extension

Note: Before beginning this recipe – you may find it useful to understand a bit about HTML. Read our HTML primer.

Easy wasn’t it? Now let’s do something a little more complicated. Let’s say we’re interested in the roles a specific actress played. The source for all kinds of data on this is the IMDB (You can also search on sites like DBpedia or Freebase for this kinds of information; however, we’ll stick to IMDB to show the principle)

    Let’s say we’re interested in creating a timeline with all the movies the Italian actress Asia Argento ever starred; where do we start?

    The IMDB has a quite comprehensive archive of actors. Asia Argento’s site is: http://www.imdb.com/name/nm0000782/

    If you open the page you’ll see all the roles she ever played, together with a title and the year – let’s scrape this information

    Try to scrape it like we did above

    You’ll see the list comes out garbled – this is because the list here is structured quite differently.

    Go to the scraper console. Notice the small box on the upper left, saying XPath?

    XPath is a query language for HTML and XML.

    XPath can help you find the elements in the page you’re interested in – all you need to do is find the right element and then write the xpath for it.

    Now let’s assemble our table.

    You’ll see that our current Xpath – the one including the whole information is “//div[3]/div[3]/div[2]/div”

    http://farm9.staticflickr.com/8344/8264510130_ae31697fde_o_d.png

    Xpath is very simple it tells the computer to look at the HTML document and select <div> element number 3, then in this the third one, the second one and then all <div> elements (which if you count down our list, results in exactly where you are right now.
  •     However, we’d like to have the data separated out.
  •     To do this use the columns part of the scraper console…
  •     Let’s find our title first – look at the title using Inspect Element
  •     http://farm9.staticflickr.com/8355/8263441157_b4672d01b2_o_d.png
  •     See how the title is within a <b> tag? Let’s add the tag to our xpath.
  •     The expression seems to work well: let’s make this our first column
  •     In the “Columns” section, change the name of the first column to “title”
  •     Now let’s add the XPATH for the title to it
  •     The xpaths in the columns section are relative, that means “./b” will select the <b> element
  •     add “./b” to the xpath for the title column and click “scrape”
  •     http://farm9.staticflickr.com/8357/8263441315_42d6a8745d_o_d.png
  •     See how you only get titles?
  •     Now let’s continue for year? Years are within one <span>
  •     Create a new column by clicking on the small plus next to your “title” column
  •     Now create the “year” column with xpath “./span”
  •     http://farm9.staticflickr.com/8347/8263441355_89f4315a78_o_d.png
  •     Click on scrape and see how the year is added
  •     See how easily we got information out of a less structured webpage?
Source: http://schoolofdata.org/handbook/recipes/scraper-extension-for-chrome/

Saturday, 15 November 2014

Building Java Object Graph with Tour de France results – using screen scraping, java.util.Parser and assorted facilities

Last Saturday, the Tour de France 2011 departed. For people like myself, enjoying sports and working on Data Visualizations on the one hand and far fetched uses of SQL on the other, the Tour de France offers a wealth of data to work with: rankings for each stage in various categories, nationalities and teams to group by, distances and velocity, years to compare with one another and the like. So it has been my intention for some time to get hold of that data in a format I could work with.

Today I finally found some time to get it done. To locate the statistics for the Tour de France editions for the last few years and get them onto my laptop and into my database. This article describes the first part of that journey: how to get the stage results from some source on the internet into my locally running Java program in an appropriate object structure.

My starting point is the official Tour de France website:

Image

This website goes back to 2007 and also has the latest (2011) results. It presents the result in a format pleasing to the human eye – based on an HTML structure that is fairly pleasing to my groping Java code as well.

Analyzing the source of the Tour de France data

I start my explorations in Firefox, using the Firebug plugin. When I select the tab with the results for a particular stage, I inspect the (AJAX) call that is made to retrieve the stage results into the browser:

Image

The URL that was accessed is www.letour.fr/2010/TDF/LIVE/us/700/classement/ITE.html . When I access that URL directly, I see an HTML fragment with the individual ranking for the 7th stage in 2010. It turns out that with ITG instead of ITE in this URL, I get the overall ranking after the 7th Stage. Using IME in stead of ITE, I get the 7th stage’s climbers’ standing. And so on.

The HTML associated with the stage standing looks like this:

Image

Which is not as user friendly as the corresponding display in the browser:

Image

but still fairly well structured and programmatically interpretable.

Retrieving HTML fragments and parsing in Java

Consuming these HTML fragments with stage standings into my own Java code is very easy. Parsing the data and turning it into sensible Java Objects is slightly more work, but still quite feasible. From the Java Objects I next need to create a persistent storage for the data – that is the subject for another article.

Using the Java URL class and its openStream method to open an InputStream on whatever content can be found at the URL, it is dead easy to start reading the HTML from the Tour de France website into my Java program. I make use of the java.util.Scanner class to work my way through the HTML by Table Row (TR element). When you inspect the HTML fragments, it is clear early on that every individual rider’s entry corresponds with a TR element, so it seems only logical to have the Scanner break up the data by TR.

private static Stage processStage(int year, int stageSequence, Map<Integer, Rider> riders) throws java.io.IOException, java.net.MalformedURLException {

    String typeOfStanding = "ITE";
     URL stageStanding = new URL("http://www.letour.fr/"+year+"/TDF/LIVE/us/"
                                +(stageSequence==0?"0":stageSequence+"00") +
                                "/classement/"+typeOfStanding+".html");
    InputStream stream = stageStanding.openStream();
    Scanner scanner = new Scanner(stream);
    scanner.useDelimiter("</tr>");
    Stage stage = new Stage();
    stage.setSequence(stageSequence);
    boolean first = true;
    boolean firstStanding = true;
    while (scanner.hasNext()) {
        String entry = scanner.next();
        if (first) {
            first = false;
            Matcher regexMatcher = regexDistance.matcher(entry);
            if (regexMatcher.find()) {
                String distanceString = regexMatcher.group();
                stage.setTotalDistance(Float.parseFloat(distanceString.substring(0, distanceString.length() - 3)));
            }
        }
        if (!first) {
            String[] els = entry.split("/td>");
            if (els.length > 1) { // only the standing-entries have more than one td element
                Integer riderNumber = Integer.parseInt(extractValue(els[2]));

                Rider rider=null;
                if (riders.containsKey(riderNumber)) {
                    rider = riders.get(riderNumber);
                }
                else {
                    rider = new Rider(extractValue(els[1]),riderNumber, extractValue(els[3]));
                    riders.put(riderNumber,rider);
                }
                Standing standing =
                    new Standing(firstStanding ? 1 : (Integer.parseInt(extractValue(els[0]).replace(".", ""))),
                                  rider,extractValue(els[4]),
                                  extractValue(els[5]));
                firstStanding = false;
                stage.getStandings().add(standing);                }
        }
    } //while
    scanner.close();
    return stage;
}

Subsequently, the TR elements need to be broken up in the TD cell elements that contain the rank, rider’s name, their number, the team they ride for and the time for the stage as well as their lag with regard to the winner. I have used a simple split (on /td>) to extract the cells. The final logic for pulling the correct value from the cell is in the method extractValue. Note: this code is not very pretty, and I am not necessarily overly proud of it. On the other hand: it is one-time-use-only code and it is still fairly compact and easy to write and read.

private static String extractValue(String el) {
    String r = el.split("</")[0];
    if (r.lastIndexOf(">") > 0) {
        r = r.substring(r.lastIndexOf(">") + 1);
    }
    return r.split("<")[0];
}

I have created a few domain classes: Rider, Stage, Standing (as well as Tour) that are a business domain like representation of the Tour de France result data. Objects based on these classes are instantiated in the processStage method that is being invoked from the processTour method.

public static void processTour(Tour tour) throws IOException, MalformedURLException {
    if (tour.isPrologue())
      tour.getStages().add(processStage(tour.getYear(),0, tour.getRiders()));

    for (int i=1;i<= tour.getNumberOfStages();i++)  {
        tour.getStages().add(processStage(tour.getYear(),i, tour.getRiders()));
    }
}

When I run the TourManager class – a class that create a single Tour object for the Tour de France in 2010 –

public class TourManager {
     List<Tour> tours = new ArrayList<Tour>();
     public TourManager() {
        tours.add(new Tour(2010, 20, true));
        try {
            ProcessTourStandings.processTour(tours.get(0));
        } catch (MalformedURLException e) {
            System.out.println(e.getMessage());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
     public static void main(String[] args) {
        TourManager tm = new TourManager();
        for (Tour tour : tm.getTours()) {
            for (Stage stage : tour.getStages()) {
                System.out.println("================ Stage " + stage.getSequence() + "(" + stage.getTotalDistance() +
                                   " km)");
                for (Standing standing : stage.getStandings()) {
                    if (standing.getRank() < 4) {
                        System.out.println(standing.getRank() + "." + standing.getRider().getName());
                    }
                }
            }
        }
    }

it will print the top 3 in every stage:

Image

Source:http://technology.amis.nl/2011/07/04/building-java-object-graph-with-tour-de-france-results-using-screen-scraping-java-util-parser-and-assorted-facilities/

Thursday, 13 November 2014

Scraping Data: Site-specific Extractors vs. Generic Extractors

Scraping is becoming a rather mundane job with every other organization getting its feet wet with it for their own data gathering needs. There have been enough number of crawlers built – some open-sourced and others internal to organizations for in-house utilities. Although crawling might seem like a simple technique at the onset, doing this at a large-scale is the real deal. You need to have a distributed stack set up to take care of handling huge volumes of data, to provide data in a low-latency model and also to deal with fail-overs. This still is achievable after crossing the initial tech barrier and via continuous optimizations. (P.S. Not under-estimating this part because it still needs a team of Engineers monitoring the stats and scratching their heads at times).

Social Media Scraping

Focused crawls on a predefined list of sites

However, you bump into a completely new land if your goal is to generate clean and usable data sets from these crawls i.e. “extract” data in a format that your DB can process and aid in generating insights. There are 2 ways of tackling this:

a. site-specific extractors which give desired results

b. generic extractors that result in few surprises

Assuming you still do focused crawls on a predefined list of sites, let’s go over specific scenarios when you have to pick between the two-

1. Mass-scale crawls; high-level meta data - Use generic extractors when you have a large-scale crawling requirement on a continuous basis. Large-scale would mean having to crawl sites in the range of hundreds of thousands. Since the web is a jungle and no two sites share the same template, it would be impossible to write an extractor for each. However, you have to settle in with just the document-level information from such crawls like the URL, meta keywords, blog or news titles, author, date and article content which is still enough information to be happy with if your requirement is analyzing sentiment of the data.

cb1c0_one-size

A generic extractor case

Generic extractors don’t yield accurate results and often mess up the datasets deeming it unusable. Reason being

programatically distinguishing relevant data from irrelevant datasets is a challenge. For example, how would the extractor know to skip pages that have a list of blogs and only extract the ones with the complete article. Or delineating article content from the title on a blog page is not easy either.

To summarize, below is what to expect of a generic extractor.

Pros-

minimal manual intervention

low on effort and time

can work on any scale

Cons-

Data quality compromised

inaccurate and incomplete datasets

lesser details suited only for high-level analyses

Suited for gathering- blogs, forums, news

Uses- Sentiment Analysis, Brand Monitoring, Competitor Analysis, Social Media Monitoring.

2. Low/Mid scale crawls; detailed datasets - If precise extraction is the mandate, there’s no going away from site-specific extractors. But realistically this is do-able only if your scope of work is limited i.e. few hundred sites or less. Using site-specific extractors, you could extract as many number of fields from any nook or corner of the web pages. Most of the times, most pages on a website share similar templates. If not, they can still be accommodated for using site-specific extractors.

cutlery

Designing extractor for each website

Pros-

High data quality

Better data coverage on the site

Cons-

High on effort and time

Site structures keep changing from time to time and maintaining these requires a lot of monitoring and manual intervention

Only for limited scale

Suited for gathering - any data from any domain on any site be it product specifications and price details, reviews, blogs, forums, directories, ticket inventories, etc.

Uses- Data Analytics for E-commerce, Business Intelligence, Market Research, Sentiment Analysis

Conclusion

Quite obviously you need both such extractors handy to take care of various use cases. The only way generic extractors can work for detailed datasets is if everyone employs standard data formats on the web (Read our post on standard data formats here). However, given the internet penetration to the masses and the variety of things folks like to do on the web, this is being overly futuristic.

So while site-specific extractors are going to be around for quite some time, the challenge now is to tweak the generic ones to work better. At PromptCloud, we have added ML components to make them smarter and they have been working well for us so far.

What have your challenges been? Do drop in your comments.

Source: https://www.promptcloud.com/blog/scraping-data-site-specific-extractors-vs-generic-extractors/

Wednesday, 12 November 2014

'Scrapers' Dig Deep for Data on Web

At 1 a.m. on May 7, the website PatientsLikeMe.com noticed suspicious activity on its "Mood" discussion board. There, people exchange highly personal stories about their emotional disorders, ranging from bipolar disease to a desire to cut themselves.

It was a break-in. A new member of the site, using sophisticated software, was "scraping," or copying, every single message off PatientsLikeMe's private online forums.

Enlarge Image

Bilal Ahmed wrote about his health on a site that was scraped. Andrew Quilty for The Wall Street Journal.

PatientsLikeMe managed to block and identify the intruder: Nielsen Co., the privately held New York media-research firm. Nielsen monitors online "buzz" for clients, including major drug makers, which buy data gleaned from the Web to get insight from consumers about their products, Nielsen says.

"I felt totally violated," says Bilal Ahmed, a 33-year-old resident of Sydney, Australia, who used PatientsLikeMe to connect with other people suffering from depression. He used a pseudonym on the message boards, but his PatientsLikeMe profile linked to his blog, which contains his real name.

After PatientsLikeMe told users about the break-in, Mr. Ahmed deleted all his posts, plus a list of drugs he uses. "It was very disturbing to know that your information is being sold," he says. Nielsen says it no longer scrapes sites requiring an individual account for access, unless it has permission.

Related Reading

    Digits: Escaping the 'Scrapers'
    Complete Coverage: What They Know

Journal Community

The market for personal data about Internet users is booming, and in the vanguard is the practice of "scraping." Firms offer to harvest online conversations and collect personal details from social-networking sites, résumé sites and online forums where people might discuss their lives.

The emerging business of web scraping provides some of the raw material for a rapidly expanding data economy. Marketers spent $7.8 billion on online and offline data in 2009, according to the New York management consulting firm Winterberry Group LLC. Spending on data from online sources is set to more than double, to $840 million in 2012 from $410 million in 2009.

The Wall Street Journal's examination of scraping—a trade that involves personal information as well as many other types of data—is part of the newspaper's investigation into the business of tracking people's activities online and selling details about their behavior and personal interests.

Some companies collect personal information for detailed background reports on individuals, such as email addresses, cell numbers, photographs and posts on social-network sites.

Others offer what are known as listening services, which monitor in real time hundreds or thousands of news sources, blogs and websites to see what people are saying about specific products or topics.

One such service is offered by Dow Jones & Co., publisher of the Journal. Dow Jones collects data from the Web—which may include personal information contained in news articles and blog postings—that help corporate clients monitor how they are portrayed. It says it doesn't gather information from password-protected parts of sites.

It's rarely a coincidence when you see Web ads for products that match your interests. WSJ's Christina Tsuei explains how advertisers use cookies to track your online habits.

The competition for data is fierce. PatientsLikeMe also sells data about its users. PatientsLikeMe says the data it sells is anonymized, no names attached.

Nielsen spokesman Matt Anchin says the company's reports to its clients include publicly available information gleaned from the Internet, "so if someone decides to share personally identifiable information, it could be included."

Internet users often have little recourse if personally identifiable data is scraped: There is no national law requiring data companies to let people remove or change information about themselves, though some firms let users remove their profiles under certain circumstances.

California has a special protection for public officials, including politicians, sheriffs and district attorneys. It makes it easier for them to remove their home address and phone numbers from these databases, by filling out a special form stating they fear for their safety.

Data brokers long have scoured public records, such as real-estate transactions and courthouse documents, for information on individuals. Now, some are adding online information to people's profiles.

Many scrapers and data brokers argue that if information is available online, it is fair game, no matter how personal.

"Social networks are becoming the new public records," says Jim Adler, chief privacy officer of Intelius Inc., a leading paid people-search website. It offers services that include criminal background checks and "Date Check," which promises details about a prospective date for $14.95.

"This data is out there," Mr. Adler says. "If we don't bring it to the consumer's attention, someone else will."

Scraping for Your Real Name

PeekYou.com has applied for a patent for a way to, among other things, match people's real names to pseudonyms they use on blogs, Twitter and online forums.

Read PeekYou.com's patent application.

Enlarge Image

New York-based PeekYou LLC has applied for a patent for a method that, among other things, matches people's real names to the pseudonyms they use on blogs, Twitter and other social networks. PeekYou's people-search website offers records of about 250 million people, primarily in the U.S. and Canada.

PeekYou says it also is starting to work with listening services to help them learn more about the people whose conversations they are monitoring. It says it hands over only demographic information, not names or addresses.

Employers, too, are trying to figure out how to use such data to screen job candidates. It's tricky: Employers legally can't discriminate based on gender, race and other factors they may glean from social-media profiles.

One company that screens job applicants for employers, InfoCheckUSA LLC in Florida, began offering limited social-networking data—some of it scraped—to employers about a year ago. "It's slowly starting to grow," says Chris Dugger, national account manager. He says he's particularly interested in things like whether people are "talking about how they just ripped off their last employer."

Scrapers operate in a legal gray area. Internationally, anti-scraping laws vary. In the U.S., court rulings have been contradictory. "Scraping is ubiquitous, but questionable," says Eric Goldman, a law professor at Santa Clara University. "Everyone does it, but it's not totally clear that anyone is allowed to do it without permission."

Scrapers and listening companies say what they're doing is no different from what any person does when gathering information online—they just do it on a much larger scale.

"We take an incomprehensible amount of information and make it intelligent," says Chase McMichael, chief executive of InfiniGraph, a Palo Alto, Calif., "listening service" that helps companies understand the likes and dislikes of online customers.

Scraping services range from dirt cheap to custom-built. Some outfits, such as 80Legs.com in Texas, will scrape a million Web pages for $101. One Utah company, screen-scraper.com, offers do-it-yourself scraping software for free. The top listening services can charge hundreds of thousands of dollars to monitor and analyze Web discussions.

Some scrapers-for-hire don't ask clients many questions.

"If we don't think they're going to use it for illegal purposes—they often don't tell us what they're going to use it for—generally, we'll err on the side of doing it," says Todd Wilson, owner of screen-scraper.com, a 10-person firm in Provo, Utah, that operates out of a two-room office. It is one of at least three firms in a scenic area known locally as "Happy Valley" that specialize in scraping.

Enlarge Image

Some of the computer code behind screen-scraper.com's software. Chris Detrick for The Wall Street Journal

Screen-scraper charges between $1,500 and $10,000 for most jobs. The company says it's often hired to conduct "business intelligence," working for companies who want to scrape competitors' websites.

One recent assignment: A major insurance company wanted to scrape the names of agents working for competitors. Why? "We don't know," says Scott Wilson, the owner's brother and vice president of sales. Another job: attempting to scrape Facebook for a multi-level marketing company that wanted email addresses of users who "like" the firm's page—as well as their friends—so they all could be pitched products.

Scraping often is a cat-and-mouse game between websites, which try to protect their data, and the scrapers, who try to outfox their defenses. Scraping itself isn't difficult: Nearly any talented computer programmer can do it. But penetrating a site's defenses can be tough.

One defense familiar to most Internet users involves "captchas," the squiggly letters that many websites require people to type to prove they're human and not a scraping robot. Scrapers sometimes fight back with software that deciphers captchas.

More From the Series

    Web's New Goldmine: Your Secrets

    Personal Details Exposed Via Biggest Websites

    Microsoft Quashed Bid to Boost Web Privacy

    On Web's Cutting Edge, Anonymity in Name Only

    Stalking by Cellphone

    Google Agonizes Over Privacy

    The Tracking Ecosystem

    On the Web, Children Face Intensive Tracking

Some professional scrapers stage blitzkrieg raids, mounting around a dozen simultaneous attacks on a website to grab as much data as quickly as possible without being detected or crashing the site they're targeting.

Raids like these are on the rise. "Customers for whom we were regularly blocking about 1,000 to 2,000 scrapes a month are now seeing three times or in some cases 10 times as much scraping," says Marino Zini, managing director of Sentor Anti Scraping System. The company's Stockholm team blocks scrapers on behalf of website clients.

At Monster.com, the jobs website that stores résumés for tens of millions of individuals, fighting scrapers is a full-time job, "every minute of every day of every week," says Patrick Manzo, global chief privacy officer of Monster Worldwide Inc. Facebook, with its trove of personal data on some 500 million users, says it takes legal and technical steps to deter scraping.

At PatientsLikeMe, there are forums where people discuss experiences with AIDS, supranuclear palsy, depression, organ transplants, post-traumatic stress disorder and self-mutilation. These are supposed to be viewable only by members who have agreed not to scrape, and not by intruders such as Nielsen.

"It was a bad legacy practice that we don't do anymore," says Dave Hudson, who in June took over as chief executive of the Nielsen unit that scraped PatientsLikeMe in May. "It's something that we decided is not acceptable, and we stopped."

Mr. Hudson wouldn't say how often the practice occurred, and wouldn't identify its client.

The Nielsen unit that did the scraping is now part of a joint venture with McKinsey & Co. called NM Incite. It traces its roots to a Cincinnati company called Intelliseek that was founded in 1997. One of its most successful early businesses was scraping message boards to find mentions of brand names for corporate clients.

In 2001, the venture-capital arm of the Central Intelligence Agency, In-Q-Tel Inc., was among a group of investors that put $8 million into the business.

Intelliseek struggled to set boundaries in the new business of monitoring individual conversations online, says Sundar Kadayam, Intelliseek's co-founder. The firm decided it wouldn't be ethical to use automated software to log into private message boards to scrape them.

But, he says, Intelliseek occasionally would ask employees to do that kind of scraping if clients requested it. "The human being can just sign in as who they are," he says. "They don't have to be deceitful."

In 2006, Nielsen bought Intelliseek, which had revenue of more than $10 million and had just become profitable, Mr. Kadayam says. He left one year after the acquisition.

At the time, Nielsen, which provides television ratings and other media services, was looking to diversify into digital businesses. Nielsen combined Intelliseek with a New York startup it had bought called BuzzMetrics.

The new unit, Nielsen BuzzMetrics, quickly became a leader in the field of social-media monitoring. It collects data from 130 million blogs, 8,000 message boards, Twitter and social networks. It sells services such as "ThreatTracker," which alerts a company if its brand is being discussed in a negative light. Clients include more than a dozen of the biggest pharmaceutical companies, according to the company's marketing material.

Like many websites, PatientsLikeMe has software that detects unusual activity. On May 7, that software sounded an alarm about the "Mood" forum.

David Williams, the chief marketing officer, quickly determined that the "member" who had triggered the alert actually was an automated program scraping the forum. He shut down the account.

The next morning, the holder of that account e-mailed customer support to ask why the login and password weren't working. By the afternoon, PatientsLikeMe had located three other suspect accounts and shut them down. The site's investigators traced all of the accounts to Nielsen BuzzMetrics.

On May 18, PatientsLikeMe sent a cease-and-desist letter to Nielsen. Ten days later, Nielsen sent a letter agreeing to stop scraping. Nielsen says it was unable to remove the scraped data from its database, but a company spokesman later said Nielsen had found a way to quarantine the PatientsLikeMe data to prevent it from being included in its reports for clients.

PatientsLikeMe's president, Ben Heywood, disclosed the break-in to the site's 70,000 members in a blog post. He also reminded users that PatientsLikeMe also sells its data in an anonymous form, without attaching user's names to it. That sparked a lively debate on the site about the propriety of selling sensitive information. The company says most of the 350 responses to the blog post were supportive. But it says a total of 218 members quit.

In total, PatientsLikeMe estimates that the scraper obtained about 5% of the messages in the site's forums, primarily in "Mood" and "Multiple Sclerosis."

Source: http://online.wsj.com/articles/SB10001424052748703358504575544381288117888